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Abstract

The spectral stochastic finite element method (SSFEM) aims at constructing a probabilistic representation of the response of a mechanical

system, whose material properties are random fields. The response quantities, e.g. the nodal displacements, are represented by a polynomial

series expansion in terms of standard normal random variables. This expansion is usually post-processed to obtain the second-order statistical

moments of the response quantities. However, in the literature, the SSFEM has also been suggested as a method for reliability analysis. No

careful examination of this potential has been made yet. In this paper, the SSFEM is considered in conjunction with the first-order reliability

method (FORM) and with importance sampling for finite element reliability analysis. This approach is compared with the direct coupling of a

FORM reliability code and a finite element code. The two procedures are applied to the reliability analysis of the settlement of a foundation

lying on a randomly heterogeneous soil layer. The results are used to make a comprehensive comparison of the two methods in terms of their

relative accuracies and efficiencies. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many applications in mechanics require consideration of

stochastic properties of materials, geometry or loads. The

basic representation of uncertain parameters in the under-

lying models is obtained by introducing random variables or

fields. Different kinds of analysis accounting for uncertain-

ties can be carried out. Second moment analysis aims at

characterizing the second-order statistical moments, i.e.

means and variances of response quantities (displacements,

strain and stress components, etc.) from those of the input

variables. The perturbation method [1–4] and the weighted

integral method [5–7] are in this category. On the other

hand, reliability methods focus on the calculation of the

probability of failure associated with a limit-state function.

First-order reliability method (FORM) and SORM approxi-

mations and various simulation methods are commonly

used in reliability analysis [8]. Because of the typically high

level of reliability of civil structures, the failure probability

is usually small (in the order of 1022–1026).

To account for the spatial variability of uncertain

quantities (for instance, that of a material property), a

characterization in terms of a random field is usually

employed. Through a process of discretization, it is possible

to represent the random field by a vector of random

variables. One of the methods mentioned above may then be

used to carry out second-moment or reliability analysis.

The spectral stochastic finite element method (SSFEM)

proposed by Ghanem and Spanos [9] is an approach well

suited to analysis involving random fields. It is based on two

discretizations of the system of (stochastic) partial differ-

ential equations governing the problem under consideration,

one in the spatial domain and one in the probabilistic

domain. The response (e.g. the random vector of nodal

displacements) is cast as a series expansion in standard

normal random variables. This can be interpreted as an

‘intrinsic’ representation of the random response, from

which quantities such as statistical moments can be

computed by post-processing, either analytically or by

simulation.

In the past, SSFEM has been applied to various kinds of

problems including two-dimensional elasticity [9], soil

mechanics [10], soil dynamics [11], transport in porous

media [12] and heat conduction [13]. The first attempt to

include material non-linearity such as plasticity can be

found in Ref. [14]. In these applications, the authors

compute the coefficients of the series expansion of the

response, and in most cases post-process the polynomial

expression to compute the mean and standard deviation of

various response quantities. The possibility of using these

probabilistic response expressions for reliability analysis
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has been suggested in Ref. [15], p. 2362 and in Ref. [9],

Section 4.1, p. 101–4 and Section 4.4, p. 118–9. However,

no careful examination has been made of this potential,

although a comparison between FORM/SORM analysis and

polynomial chaos expansion for highly non-linear systems

has been presented in Ref. [16].

This paper critically examines the applicability of

SSFEM in the context of reliability analysis using the

FORM approximation as well as importance sampling. The

approach is compared with a direct coupling of a FORM

reliability code and a finite element code, similar to that

used in Refs. [17–19]. The comparison is illustrated through

an application to a geotechnical engineering problem

involving the settlement of a foundation supported on

randomly heterogeneous soil. Specific quantitative

measures of accuracy and efficiency of the two methods

are given.

2. Discretization of random fields

A random field Hðx; uÞ is a collection of random

variables associated with a continuous index x [ V , Rn;
where u [ Q is the coordinate in the outcome space. With

this notation, Hðx; u0Þ denotes a particular realization of the

field, whereas Hðx0; uÞ is the random variable associated

with point x0: Gaussian random fields are of practical

interest because they are completely described by a mean

function mðxÞ; a variance function s2ðxÞ and an autocorrela-

tion coefficient function rðx; x0Þ:
Discretizing the random field Hð·Þ consists in approxi-

mating it by Ĥð·Þ; which is defined by means of a finite set of

random variables {xi; i ¼ 1;…; n}; grouped in a random

vector denoted by x:

Hðx; uÞ !
Discretization

Ĥðx; uÞ ¼ ½Fx;xðuÞ� ð1Þ

Several methods have been developed in the 1980s to carry

out this task, such as the spatial average method [20], the

midpoint method [17] and the shape function method [3,4].

A comprehensive review and comparison of these methods

is presented in Ref. [21]. These early methods are relatively

inefficient, in the sense that a large number of random

variables is required to achieve a good approximation of the

field. More efficient approaches for discretization of random

fields using series expansion methods have been introduced

in the past 10 years, including the Karhunen–Loève

Expansion (KL) [9], the Orthogonal Series Expansion

(OSE) [22] and the Expansion Optimal Linear Estimation

(EOLE) method [21]. Reviews of these methods have been

presented in Refs. [21,23,24]. As shown in Ref. [24], all

three methods result in a representation of the Gaussian field

in the form

Ĥðx; uÞ ¼ mðxÞ þ
XM
i¼1

HiðxÞjiðuÞ ð2Þ

where {jiðuÞ; i ¼ 1;…;M} are standard normal random

variables {HiðxÞ; i ¼ 1;…;M} are deterministic functions

depending on the correlation structure of the field and M is

the number of terms used in the series expansion. The

accuracy of the representation depends on M and the

particular expansion method used. Details about the

respective advantages of each method in terms of accuracy

and efficiency can be found in Ref. [24].

3. Summary of SSFEM

The SSFEM is detailed in Ref. [9]. For the sake of clarity

and completeness, the principles and main steps are

presented in the sequel. As mentioned in Section 1,

SSFEM is based on two successive discretizations of the

system of stochastic partial differential equations governing

the problem under consideration:

† A spatial discretization similar to the one used in

classical finite element analysis, i.e. involving a mesh

of the structure and shape functions.

† A probabilistic discretization of the random field(s)

representing the uncertain properties of the constitutive

material or loads. The KL expansion has been used in the

literature. However, any of the series expansion methods

mentioned in Section 2 is equally applicable.

In classical finite element analysis, the basic response

quantity is the vector of nodal displacements. In SSFEM,

due to the introduction of a random field as an input, the

basic response quantity is a random vector of nodal

displacements UðuÞ; whose probabilistic content is a priori

unknown. Each component UiðuÞ is expanded over the so-

called polynomial chaos (see Ref. [24] for a simplified

presentation of this concept):

UiðuÞ ¼
XP21

j¼0

Ui
jCjð{jkðuÞ}

M
k¼1Þ ð3Þ

where {jkðuÞ; k ¼ 1;…;M} denote the standard normal

variables appearing in the discretization of the input random

field (Eq. (2)), Cjð{jkðuÞ}
M
k¼1Þ are multidimensional Hermite

polynomials defined by means of the jis and P is the order of

expansion. The latter is connected to the number of random

variables M (order of the expansion of the random field) and

the highest order p of the polynomials Cj by:

P ¼
Xp

k¼0

M þ k 2 1

k

 !
ðbinomial coefficientÞ ð4Þ

Using classical notation, the finite element method for static

problems in linear elasticity eventually yields a linear

system of size N £ N (N being the number of degrees of

freedom)

K·U ¼ F ð5Þ
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where F is the deterministic load vector, and where the

global stiffness matrix K is obtained after assembling the

element stiffness matrices ke :

K ¼
[

e

ke; ke ¼
ð
Ve

BT·D·B dVe ð6Þ

In the above, D stands for the elasticity matrix and B is the

matrix that relates the components of strain to the element

nodal displacements. Suppose that the Young’s modulus of

the material is a random field. Then the elasticity matrix at

point x can be written as

Dðx; uÞ ¼ Hðx; uÞD0 ð7Þ

where D0 is a constant deterministic matrix corresponding

to a unit value of the Young’s modulus. Substituting Eq. (7)

in Eq. (6) yields the stochastic stiffness matrix

KðuÞ ¼
[

e

keðuÞ ¼
[

e

ð
Ve

BT·D0Hðx; uÞ·B dVe ð8Þ

When the random field Hðx; uÞ appearing in Eq. (8) is

discretized as in Eq. (2), the stochastic stiffness matrix takes

the form

KðuÞ < K0 þ
XM
i¼1

KijiðuÞ ð9Þ

where the mean- and weighted stiffness matrices K0 and Ki

are given by

K0 ¼
[

e

ke
0 ¼

[
e

ð
Ve

mðxÞBT·D0·B dVe ð10Þ

Ki ¼
[

e

ke
i ¼

[
e

ð
Ve

HiðxÞB
T·D0·B dVe ð11Þ

Collecting the terms in Eq. (3) in a vector form, the random

vector of nodal displacements is expanded over the

polynomial chaos with P coefficient vectors {U0;…;
UP21}: These coefficients are computed using the Galerkin

method for minimizing the residual in the equilibrium

equation, leading to:

K00 · · · K0;P21

K10 · · · K1;P21

..

. ..
.

KP21;0 · · · KP21;P21

2
66666664

3
77777775

·

U0

U1

..

.

UP21

2
66666664

3
77777775
¼

F

0

..

.

0

2
6666664

3
7777775 ð12Þ

where {Kjk ¼
PM

i¼0 cijkKi; j; k ¼ 0;…;P 2 1} and cijk ¼

E½jiCjCk� (mathematical expectation of products).

In essence, in SSFEM, the characterization of the random

vector of nodal displacements is reduced to solving a linear

system of size ðN £ PÞ; where N is the number of degrees of

freedom of the structure, and P is the order of expansion of

the response. In application, P is usually in the range 10–35,

which means that the above system of equations can be

quite large, even for small size problems. Specific methods

for efficiently solving this system of equations have been

proposed by Ghanem and Kruger [25].

4. Finite element reliability analysis

Reliability methods aim at evaluating the probability of

failure of a system whose modeling takes into account

randomness. Let x denote the set of all basic random

variables pertaining to the structure under consideration. If

random fields are involved, one of the discretization

schemes mentioned earlier can be used to represent them

in terms of a finite set of random variables, which are also

included in x. Let S denote the vector of load effects

(displacements, strains, stresses, measures of damage, etc.).

These two vectors are related through the mechanical

transformation S ¼ SðxÞ; which in non-trivial cases is

defined in an algorithmic sense, e.g. through a finite element

computer code. To assess the reliability of the structure, a

limit-state function g depending on load effects is defined

such that gðSÞ . 0 defines the safe state and gðSÞ # 0

defines the failure state. The values of S satisfying gðSÞ ¼ 0

define the limit-state surface of the system. Using this

notation, the aim of reliability analysis is to compute the

probability of the failure event

Pf ¼ PðgðSðxÞÞ # 0Þ ¼
ð

gðSðxÞÞ#0
fxðxÞdx ð13Þ

where fxðxÞ is the joint probability density function (PDF)

of the random variables x. System reliability problems

involve a multitude of limit-state functions and a logical

expression of events as described above [8].

Direct evaluation of Eq. (13) usually is not possible

because of the high dimension of the integral. To overcome

this difficulty, the problem is recast in the standard normal

space through a probabilistic transformation YðxÞ of the

basic random variables x: The Nataf or Rosenblatt

transformations can be used for this purpose [8]. The

problem then reduces to that of computing

Pf ¼
ð

gðS+Y21ðYÞÞ
wðyÞdy ð14Þ

where wðyÞ denotes the standard normal PDF.

4.1. First-order reliability method (FORM)

The FORM consists in replacing the integration domain

in Eq. (14) by the half-space obtained from the tangent to

the limit-state surface at the design point yp: This is the point

satisfying gðS+Y21ðypÞÞ ¼ 0 that is closest to the origin in

the standard normal space. The design point yp is

determined using an optimization algorithm, e.g. the

improved Hasofer– Lind, Rackwitz –Fiessler (iHLRF)

algorithm ([26], see also Refs. [27,28] for other algorithms).

The reliability index b is then obtained as the norm of yp;
from which the FORM approximation of the probability of
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failure is Pf ¼ Fð2bÞ; where Fð·Þ denotes the standard

normal cumulative distribution function (CDF).

The algorithm used to find the design point is an iterative

procedure that requires evaluation of the limit-state function

gð·Þ and its gradient with respect to the basic random

variables x at each step. The former implies computing the

mechanical response of the system for a given realization of

the basic random variables. The latter involves, through the

use of the chain rule of differentiation, the gradient of the

mechanical response with respect to the basic random

variables [17,18]. This can be obtained either from the finite

element code itself by use of the direct differentiation

method [29], or through a finite difference scheme. In all

cases, the reliability code drives the finite element code as

shown in Fig. 1.

The direct coupling approach is rather general and can be

applied to non-linear and time-variant problems, and to

Gaussian as well as non-Gaussian random fields. See Refs.

[19,30] for applications to non-linear problems and Ref.

[31] for an application in dynamics.

4.2. Importance sampling

In order to validate the results obtained by FORM,

importance sampling is often used after the FORM analysis

(see Ref. [32], Chapter 3). It is based on the following

reformulation of Eq. (13):

Pf ¼
ð
Rn

I½gðSðxÞÞ # 0�
fxðxÞ

hsðxÞ
hsðxÞdx

¼ Ehs
I½gðSðxÞÞ # 0�

fxðxÞ

hsðxÞ

 �
ð15Þ

where n is the length of vector x and I½·� is the indicator

function. Thus the probability of failure is interpreted as the

expectation of a quantity with respect to the importance

sampling probability density function hsðxÞ: It can be

estimated as follows:

Pf <
1

Ns

XNs

i¼1

I½gðSðxiÞÞ # 0�
fxðxiÞ

hsðxiÞ

� �
ð16Þ

where {xi; i ¼ 1;…;Ns} are the sample values. To take

advantage from the FORM analysis previously carried out,

the sampling PDF is usually centered on the FORM design

point, and is assigned a prescribed covariance matrix. By

this procedure, the simulation points are concentrated

around the design point. Thus, Eq. (16) provides a good

estimation of Pf with a relatively small number of samples

(e.g. 50–100), regardless of the value of the failure

probability. Convergence of the simulation estimate is

determined by monitoring the coefficient of variation of the

estimate. It is emphasized that the choice of the center of the

sampling PDF is arbitrary, meaning that the approach would

lead to a correct result even if the design point obtained by

FORM were inexact (though in that case the convergence

would occur more slowly) or not unique (in this case, the

number of samples required for a good accuracy would

probably be greater than 50–100).

5. Reliability analysis by SSFEM

5.1. Introduction

The basic response quantity produced by SSFEM is the

Fig. 1. Direct coupling between a reliability code and a finite element code.
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random vector of nodal displacements, cast as an expansion

over the polynomial chaos. As in deterministic finite

element analysis, quantities such as stress or strain in each

Gauss point can be derived in terms of the nodal

displacements. Consequently, each response quantity can

be cast as a function of standard normal random variables.

As an extension, any limit-state function involving these

response quantities can be given an analytical expression in

terms of standard normal random variables:

GðSÞ ¼ G S
XP21

j¼0

Ui
jCjð{jkðuÞ}

M
k¼1Þ

0
@

1
A

0
@

1
A ; GðjÞ ð17Þ

where GðjÞ is the limit-state function in the standard normal

space. In the simplest case, if we are interested in the

probability that the displacement Ui at a particular degree of

freedom will exceed the threshold u0; then

GðjÞ ¼ u0 2
XP21

j¼0

Ui
jCjð{jkðuÞ}

M
k¼1Þ ð18Þ

the coefficients Ui
j being computed by the SSFEM

procedure described in Section 3.

5.2. Post-processing of SSFEM for reliability analysis

Once SSFEM is carried out and the coefficients in the

polynomial expansion of the response are computed, any

desired probabilistic analysis can be performed with the

approximate limit-state function. In particular, following

Section 4.1, a FORM analysis can be carried out to

approximately determine the probability of failure associ-

ated with the limit-state function (17). It is emphasized that

this limit-state function is analytical and already cast in the

standard normal space. Its evaluation is possible at a low

cost, since no additional finite element calculations are

needed once the SSFEM analysis has been carried out. Its

gradient with respect to the random variables jk is also

known analytically and, thus, easy to compute. A chart

describing the procedure is given in Fig. 2.

Moreover, it is easy to improve the FORM estimate of

the probability of failure by importance sampling around the

design point, as described in Section 4.2.

Additional evaluations of the limit-state function

required for that purpose are computationally inexpensive.

The direct Monte Carlo simulation can also be used

efficiently, if the probability of failure is not too small.

Finally, it is possible to obtain at low cost the PDF of any

response quantity by sensitivity analysis. From Eqs. (13)

and (18), one has

Pf ¼ Pðu0 # UiÞ ¼ 1 2 Fiðu0Þ ð19Þ

where Fi is the cumulative distribution function of random

variable Ui: By differentiation, the PDF of Ui is

fiðu0Þ ¼
dFi

du0

¼ 2
dPf

du0

¼ wðbðu0ÞÞ
db

du0

ð20Þ

Classical FORM sensitivity analysis [8] allows to compute

the derivative of the reliability index b with respect to the

parameter u0 by

db

du0

¼
1

k7jgðUðjpðu0ÞÞ; u0Þk
›gðj; u0Þ

›u0

ð21Þ

In this expression, the derivative of g with respect to u0 is

simply 1 due to Eq. (18). Thus, substituting Eq. (21) in

Eq. (20) yields

fiðu0Þ ¼
wðbðu0Þ

k7jgðUðjpðu0ÞÞ; u0Þk
ð22Þ

To compute the entire PDF of a nodal displacement, a

Fig. 2. Post-processing of SSFEM for reliability analysis.
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FORM analysis is carried out for different thresholds u0;
yielding bðu0Þ and jpðu0Þ: Eq. (22) is then evaluated for each

u0:
The accuracy achieved in the above analysis with

SSFEM will depend on the accuracy of the representation

of the limit-state function in terms of the polynomially

expanded response quantities. This is examined in detail in

Section 6.

6. Application: foundation on a heterogeneous soil layer

6.1. Implementation of the various approaches

The comparison of the methods described in Sections 4

and 5 requires:

† A software for discretizing random fields.

† A reliability software allowing to determine the design

point for FORM analysis and to perform simulation,

importance sampling, etc.

† A deterministic finite element code capable of consider-

ing space-variant material properties (i.e. realizations of

a random field).

† An implementation of SSFEM.

For the second item, Finite Element Reliability Using

Matlab (FERUM) was used. This is an educational and

research software developed at the University of California

at Berkeley by Haukaas and Der Kiureghian [33]. For the

other three items, softwares were developed in the Matlab

environment as well. These include a ‘random field toolbox’

implementing the various series expansion methods men-

tioned in Section 2 as well as a ‘SSFEM toolbox’. Details

about the implementation are given in Ref. [24] and

download files can be found at http://www.ce.berkeley.

edu/~haukaas under the item ‘FERUM’. For the direct

coupling approach, the direct differentiation method is used

to compute the gradient of the finite element response, see

details in Ref. [24].

6.2. Description of the deterministic problem

Consider an elastic soil layer of thickness t lying on a

rigid substratum. A superstructure to be founded on this soil

mass is idealized as a uniform pressure P applied over a

length 2B of the free surface (Fig. 3). The soil is modeled as

an elastic linear isotropic material. A plane strain analysis is

carried out.

Due to the symmetry, half of the structure is modeled by

finite elements. Strictly speaking, there is no symmetry in

the system when random fields of material properties are

introduced. However, it is believed that this simplification

does not significantly influence the results. The parameters

selected for the deterministic model are listed in Table 1.

A refined mesh was first used to obtain the ‘exact’

maximum displacement under the foundation (point A in

Fig. 3). Less refined meshes were then tried in order to

design a mesh with as few elements as possible that yielded

no more than 1% error in the computed maximum

settlement. The mesh shown in Fig. 4a was eventually

chosen. It contains 99 nodes and 80 elements.

For the input parameters given in Table 1, the maximum

displacement obtained with the most refined mesh is

uexact
A ¼ 5:49 cm. The value obtained with the mesh in

Fig. 4a is u0
A ¼ 5:42 cm. The deformed shape is plotted in

Fig. 4b.

6.3. Description of the probabilistic data

The assessment of the serviceability of the foundation

described in the above paragraph is now investigated under

the assumption that the Young’s modulus of soil is a

homogeneous random field. The limit-state function is

defined in terms of the maximum settlement uA at the center

of the foundation:

gðUðjÞ ¼ u0 2 uAðjÞ ð23Þ

where u0 is an admissible threshold initially set equal to

10 cm.

The Young’s modulus of the soil is considered to vary

only in the vertical direction, so that it is modeled as a one-

dimensional random field along the depth. This is a

reasonable model for a layered soil medium. For the sake

of simplicity, the field is assumed to be Gaussian and

homogeneous. Initially, its second-moment properties are

considered to be the mean mE ¼ 50 MPa; the coefficient of

variation dE ¼ sE=mE ¼ 0:2; and the autocorrelation coef-

ficient function rEEðz; z0Þ ¼ expð2lz 2 z0l=‘Þ; where z is the

depth coordinate and ‘ ¼ 30 m is the correlation length.

The accuracy of the random field discretization depends

Fig. 3. Settlement of a foundation—problem definition.

Table 1

Parameters of the deterministic model

Parameter Symbol Value

Soil layer thickness T 30 m

Foundation width 2B 10 m

Applied pressure P 0.2 MPa

Soil Young’s modulus E 50 MPa

Soil Poisson’s ratio n 0.3

Mesh width L 60 m
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on the number of terms M retained in the expansion. For

each value of M, a global indicator of the accuracy of the

discretization, �1; is computed from

�1 ¼
1

lVl

ð
V
1rrðxÞdV ð24Þ

where the point-wise error estimator 1rrðxÞ is defined as:

1rrðxÞ ¼
Var½HðxÞ2 ĤðxÞ�

Var½HðxÞ�
ð25Þ

Table 2 lists the error estimates for varying M. It appears

that M ¼ 3 is sufficient to assure less than 10% error in the

discretization. Of course this value is closely related to the

parameters defining the random field, particularly

the correlation length ‘:

6.4. Comparison between direct coupling and SSFEM post-

processing

Using the direct coupling approach, the reliability index

bdirect is computed for different orders of expansion M of the

input random field. Results are reported in Table 3, column

#2. For the initial choice of the parameters, it appears that

the direct coupling provides two-digit accuracy in the

reliability index bdirect for M $ 2; which approximately

corresponds to a discretization error �1 < 10%:
When using SSFEM, the highest order p of polynomials

included in the series expansion of the response must also be

specified. For each value of M and p, the corresponding

number of terms in this expansion, P, is given in Table 3,

column #4. Following the method described in Section 5.2,

the reliability index is obtained by FORM post-processing

of the SSFEM result, and is given in column #5.

As expected, bSSFEM converges to bdirect for each value of

M, when the order p of the polynomial chaos expansion is

increased (results should be identical for p ¼ 1). From the

results in Table 3, it appears that at least p ¼ 3 should be

selected to have 5% accuracy in the reliability index.

6.5. Parametric study

A comprehensive comparison of the two approaches is

presented by Sudret and Der Kiureghian [24], where the

influences of various parameters are investigated. The main

results are reported in the sequel.

6.5.1. Influence of the reliability index

The threshold u0 in the limit-state function is varied in

this section from 6 to 30 cm, leading to an increasing

reliability index. M ¼ 2 is used. The results are reported in

Table 4.

Using the direct coupling approach, it is observed that the

number of iterations required to determine the design point

(always starting from the mean point) increases with b

(column #3 in Table 4). However, convergence is achieved

regardless of the value of the threshold. The accuracy of the

results obtained with M ¼ 2 (compared to those obtained

with M ¼ 3; not presented in the table) is the same

regardless of the value of u0: In other words, for a given

discretized random field, this approach provides correct

Fig. 4. Finite element mesh and deformed shape for mean values of the parameters by a deterministic analysis: (a) mesh; (b) deformed shape.

Table 2

Accuracy of the random field discretization

Order of expansion M Error estimator �1

1 0.269

2 0.129

3 0.082

4 0.060

5 0.048

Table 3

Reliability index b—influence of the orders of expansion M and p

M bdirect p P bSSFEM

1 2.694 1 2 4.665

2 3 3.008

3 4 2.741

4 5 2.685

5 6 2.681

2 2.631 1 3 4.510

2 6 2.904

3 10 2.656

4 15 2.611

5 21 2.614

3 2.627 1 4 4.487

2 10 2.885

3 20 2.645

4 2.627 1 5 4.480

2 15 2.885
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results for the reliability index regardless of the level of the

reliability.

When using SSFEM up to order p ¼ 5; it appears that fair

results (i.e. less than 5% discrepancy between bSSFEM and

bdirect) are obtained only for u0 # 20 cm. It is emphasized

that the present example was designed such that only two

terms ðM ¼ 2Þ provide sufficient accuracy in the discretiza-

tion of the random field, thus allowing the use of up to fifth-

order polynomial chaos terms in the expansion of the

response. In practice, the number of terms necessary to

achieve an accurate discretization of the random field is

usually larger than 2. As a result, only second- or third-order

polynomial chaos terms (p ¼ 2 or 3) in the SSFEM response

expansion are practically applicable. Restricting the

analysis to the third-order SSFEM, it is seen from

Table 4 that the SSFEM estimation of the reliability

index is fair only if this index is less than or equal to 3.

It is evident that higher-order terms in the SSFEM

expansion are necessary in order to accurately compute

the far tail of the distribution of uA:

6.5.2. Influence of the correlation length

To investigate the influence of the correlation length,

‘ ¼ 10 m is considered (instead of 30 m), while keeping the

initial values of all remaining parameters. The results are

reported in Table 5.

Comparing column #2 of Table 5 with column #2 of

Table 2 (the latter corresponding to ‘ ¼ 30 m), it is evident

that a larger number of terms M is now required in order to

achieve an acceptable accuracy in the discretization of the

random field. However, for M $ 3; i.e. �1 # 23%; a two-

digit accuracy in the reliability index is achieved when the

direct coupling method is used.

When using SSFEM, it appears that fair results (i.e. less

than 5% discrepancy between bSSFEM and bdirect) are

obtained for M $ 2–3; and p $ 3: Higher orders of the

polynomial chaos expansion would lead to an enormous

amount of computation time.

As a conclusion, the direct coupling approach is

applicable regardless of the correlation length of the field,

since it is computationally inexpensive even for M ¼ 10 or

more. In contrast, due to the computation cost, it would not

be practical to use the SSFEM with p . 2 when M ¼ 10 or

more. The computed reliability index with a lower order

expansion may not be sufficiently accurate.

6.5.3. Influence of the coefficient of variation

In this section, the order of expansion M is set equal to 2

and the threshold in the limit-state function is u0 ¼ 20 cm:
The reliability index is computed for different coefficients of

Table 4

Influence of the threshold in the limit-state function

u0 (cm) bdirect # Iterations p P bSSFEM

6 0.553 4 1 3 0.392

2 6 0.504

3 10 0.564

4 15 0.564

5 21 0.552

8 1.856 6 1 3 2.451

2 6 1.859

3 10 1.821

4 15 1.842

5 21 1.858

10 2.631 7 1 3 4.509

2 6 2.904

3 10 2.655

4 15 2.610

5 21 2.614

12 3.143 7 1 3 6.568

2 6 3.787

3 10 3.298

4 15 3.161

5 21 3.126

15 3.648 10 1 3 9.656

2 6 4.926

3 10 4.065

4 15 3.782

5 21 3.674

20 4.139 12 1 3 14.803

2 6 6.523

3 10 5.054

4 15 4.533

5 21 4.304

30 4.601 13 1 3 25.096

2 6 9.093

3 10 6.498

4 15 5.564

5 21 5.118

Table 5

Results for shorter correlation length (‘ ¼ 10 m)

M �1 bdirect p P bSSFEM

1 0.550 3.441 1 3 6.198

2 6 3.978

3 10 3.583

4 15 3.474

5 21 3.443

2 0.335 3.215 1 3 5.778

2 6 3.690

3 10 3.327

4 15 3.232

5 21 3.208

3 0.232 3.181 1 3 5.671

2 6 3.625

3 10 3.277

4 0.175 3.180 1 3 5.646

2 6 3.608

5 0.140 3.179 – – –

10 0.071 3.179 – – –

B. Sudret, A. Der Kiureghian / Probabilistic Engineering Mechanics 17 (2002) 337–348344



variation dE of the input random field. Results are reported

in Table 6.

When the direct coupling is used, convergence of the

FORM algorithm is always achieved, the number of

required iterations varying from 4 to 12, depending on the

level of b (more iterations required for larger b). The values

obtained are within 1% of those obtained with M ¼ 3 (not

presented here). It is observed that the reliability index

rapidly decreases with increasing variability in the Young’s

modulus.

When SSFEM is used, poor results are obtained for dE ¼

0:1: This is expected because this value corresponds to a

large value of the reliability index, for which the SSFEM

approach does not provide accurate results (see above for

the influence of the reliability index). For larger dE; the

results are not good either. In some cases the FORM

analysis after SSFEM does not converge, and in other cases

it converges to a wrong design point, especially when the

order of the polynomial chaos is large. This may be

explained by the fact that the polynomial response surface

associated with SSFEM is undulatory in this case (due to

higher order polynomials) and may have several local

design points. As an example, for the case of dE ¼ 0:4; it is

observed that the convergence to the true reliability index is

not monotonic with increasing p. Thus, the result obtained

with SSFEM for a given expansion order cannot be a priori

positioned with respect to the true value of the reliability

index.

From these examples, it appears that SSFEM coupled

with FORM cannot be applied safely for large coefficients

of variation of the input (e.g. dE . 0:3), whereas the results

obtained for the reliability index by the direct coupling

method are reliable regardless of the value of dE:

6.6. Comparison of efficiency

The computer processing time (CPT) required by the

direct coupling approach and by SSFEM and its post-

processing are reported in Table 7. These are for the initial

values of the parameters. The bold characters correspond to

choices of the parameters ðM; pÞ that give fair estimates of

the reliability index.

From column #2 of Table 7, it is seen that the CPT

required by the direct coupling method is linearly increasing

with the order of the expansion M. This can be explained as

follows: the only step that is modified in the finite element

analysis when M is changed is the computation of the

element stiffness matrices. Each of these matrices requires

evaluation of the realization of the random field at the

element Gauss points, and each evaluation takes a time

exactly proportional to the order of the expansion M (Eq.

(2)). The number of the gradients computed is also

proportional to M.

In contrast, when using SSFEM, the CPT increases

extremely rapidly with the order of the polynomial chaos

expansion. Thus, the method can be applied efficiently only

Table 6

Influence of the coefficient of variation of the input random field

dE bdirect p P bSSFEM

0.1 8.277 1 3 30.706

2 6 13.769

3 10 10.702

4 15 9.578

5 21 9.043

0.2 4.132 1 3 14.803

2 6 6.523

3 10 5.054

4 15 4.535

5 21 4.303

0.3 2.759 1 3 9.257

2 6 3.925

3 10 2.994

4 15 2.666

5 21 2.467

0.4 2.069 1 3 6.301

2 6 2.455

3 10 1.708

4 15 0.807a

5 21 2.045a

0.5 1.655 1 3 4.380

2 6 1.370

3 10 3.062

4 15 1.592a

5 21 1.227

a For these values, the iHLRF algorithm applied after SSFEM has not

converged after 30 iterations.

Table 7

Computer processing time required by direct coupling and SSFEM methods

M CPTa direct coupling (00) p P CPTa SSFEM (00)

1 20.6 1 2 2.3

2 3 3

3 4 3.2

4 5 4.0

5 6 4.8

2 33.6 1 3 3.9

2 6 8.0

3 10 22.6

4 15 58.2

5 21 129.0

3 43.7 1 4 4.7

2 10 30.3

3 20 296.4

4 35 1888.7

4 53.8 1 5 8.7

2 15 127.4

5 65.8 1 6 11.4

a The CPT for a deterministic finite element run with constant Young’s

modulus is 0.5700.
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when a small number of terms M allows to describe the

random field accurately, and when the reliability index

under consideration is sufficiently small so that the second

or third-order SSFEM gives a fairly accurate estimate.

6.7. Application of importance sampling

So far, the SSFEM result has been post-processed by

FORM to obtain a first-order approximation of the

probability of failure of the system. It could be argued that

this is not the best way of post-processing the SSFEM result

for reliability analysis, since:

† the analytical polynomial expression of the limit-state

function contains information that is lost when the

FORM linearization is employed,

† the limit-state surface obtained from SSFEM could be

globally accurate, but not around the design point, such

that applying FORM could give poor results.

To determine whether the FORM approximation deterio-

rates the SSFEM result, importance sampling around the

design point [32] is used after the FORM analysis based on

the limit-state function (23), see Section 4.2. This kind of

analysis with SSFEM is inexpensive, because the limit-state

function is cast in an analytical form. The sampling

probability density function used in the analysis is Gaussian

with a unit standard deviation and centered at the design

point. Ten thousand samples are used for each case. The

estimated probability of failure is then transformed back

into the reliability index bIS
SSFEM for comparison purposes.

The results are summarized in Table 8.

The FORM is exact for M ¼ 1 regardless of the value of

p (because the limit-state surface is reduced to a single

point), and when p ¼ 1 regardless of M (because the limit-

state surface is then an hyperplane). For these cases, it can

be seen in Table 8 that importance sampling gives exactly

the same results as FORM, the last-digit discrepancy being

due to the finite sample size.

Significant discrepancies between the two approaches

appear only for higher orders of polynomial chaos

expansion, e.g. p $ 3: In any case, they do not exceed 2%

of the value of the reliability index, which means that the

FORM approximation is satisfactory in all cases. Thus, it

can be concluded that, for the present example, the limit-

state surface defined analytically by the SSFEM analysis is

sufficiently smooth so that FORM gives good results in

comparison to importance sampling. It follows that errors

observed in the reliability estimates based on SSFEM in the

previous sections are due to the truncation of the polynomial

chaos expansions and not due to the FORM approximation.

6.8. Probability density function of a response quantity

As mentioned earlier, an important advantage of SSFEM

is the availability of an analytical form for the response

quantities. After the coefficients in the SSFEM expansion

are obtained, reliability analysis for any limit-state function

can be easily carried out without additional finite element

calculations. For example, one can easily compute the

probability density function of a response quantity, as

described in Section 5.2.

As an example, the PDF of the nodal displacement UA is

plotted in Fig. 5. 200 points are used, i.e. 200 reliability

problems are solved. This is done in a matter of seconds on a

personal computer. To improve the efficiency, the starting

point of each analysis is chosen as the design point of the

previous analysis. This allows convergence of the iHLRF

algorithm within three iterations. Of course, similar analysis

can be carried out by the direct coupling approach.

However, in that case, a few additional finite element

calculations at each threshold are necessary.

It can be seen that the obtained PDF has its mode close to

u0 ¼ 25:42 cm, which is the value obtained from the

deterministic finite element analysis. It should be empha-

sized that, whereas the central region of this distribution can

Table 8

Post-processing of the SSFEM results—comparison between FORM and

importance sampling

M p bFORM
SSFEM bIS

SSFEM

1 1 4.665 4.669

2 3.008 3.012

3 2.741 2.738

4 2.685 2.689

2 1 4.510 4.515

2 2.904 2.891

3 2.656 2.633

4 2.611 2.578

5 2.614 2.580

3 1 4.487 4.490

2 2.889 2.872

3 2.645 2.608

Fig. 5. Probability density function of the maximum displacement obtained

by multiple FORM analyses after SSFEM.

B. Sudret, A. Der Kiureghian / Probabilistic Engineering Mechanics 17 (2002) 337–348346



be expected to be accurate, the far tails may be inaccurate,

since they correspond to high reliability indices that are not

computed accurately by the SSFEM.

7. Conclusions

Two methods for finite element reliability analysis

involving random fields are reviewed and compared. One

method is based on a direct coupling of finite element and

reliability codes, and the other involves post-processing of

results obtained from the SSFEM. The paper critically

evaluates the purported potential of SSFEM for reliability

analysis. The comparison is carried out for an example

application involving the settlement of a foundation on

randomly heterogeneous soil. While deriving general

conclusions from a single numerical example is always

dangerous, the comparison provides ample evidence

regarding the scope and limitations of SSFEM for reliability

analysis.

As far as the direct coupling method is concerned, the

approach appears to be robust and efficient for the example

problem, regardless of the parameter values. The cost of the

analysis increases linearly with the order of the expansion of

the input random field.

With SSFEM, fair results for the reliability index can be

obtained only with high order polynomial chaos expansions

ðp $ 3Þ: However, when more than two or three terms are

used in the discretization of the random field, the

computational time with a high-order polynomial chaos

expansion rapidly increases and becomes prohibitive.

Consequently, only results obtained with a low order

polynomial chaos expansion are practically available in

such cases. They appear poor compared to those obtained by

direct coupling. In some cases, the computed reliability

index can be in gross error. For the example application, this

occurs when the input coefficient of variation is large or

when the reliability index is large.

The case of log–normal input random fields was also

investigated in Ref. [24], using the discretization scheme

proposed in Ref. [34]. The conclusions are in essence

similar to those presented in this paper. However the

computation cost for a given choice of ðM; pÞ is even greater

than in the Gaussian case. This is due to the fact that the

input random field is discretized using the polynomial chaos

as well, which requires more terms than the series expansion

used in the Gaussian case.

As an overall conclusion, it is found that SSFEM has

limited applicability to reliability problems involving small

failure probabilities. The polynomial chaos expansion

provides a global fit to each response quantity, which may

be good in the central region of the respective distribution,

but poor in the tail regions. Since small-probability events

are influenced by the tail regions of these probability

distributions, accurate results from SSFEM cannot be

expected for such problems. This limitation is more severe

for problems involving random fields with short correlation

lengths or large coefficients of variation.

The above conclusions do not invalidate the effectiveness

of SSFEM for second-moment analysis. Furthermore,

SSFEM might be effective in providing a good approxi-

mation to the central region of the probability density

function of a response quantity.
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